By Topic

A micromechanical flow sensor for microfluidic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Czaplewski, David A. ; Nanostructure & Semicond. Phys. Dept., Sandia Nat. Labs., Albuquerque, NM, USA ; Ilic, B.R. ; Zalalutdinov, M. ; Olbricht, William L.
more authors

We fabricated a microfluidic flow meter and measured its response to fluid flow in a microfluidic channel. The flow meter consisted of a micromechanical plate, coupled to a laser deflection system to measure the deflection of the plate during fluid flow. The 100 μm square plate was clamped on three sides and elevated 3 μm above the bottom surface of the channel. The response of the flow meter was measured for flow rates, ranging from 2.1 to 41.7 μL/min. Several fluids, with dynamic viscosities ranging from 0.8 to 4.5×10-3 N/m, were flowed through the channels. Flow was established in the microfluidic channel by means of a syringe pump, and the angular deflection of the plate monitored. The response of the plate to flow of a fluid with a viscosity of 4.5×10-3 N/m was linear for all flow rates, while the plate responded linearly to flow rates less than 4.2 μL/min of solutions with lower dynamic viscosities. The sensitivity of the deflection of the plate to fluid flow was 12.5±0.2 μrad/(μL/min), for a fluid with a viscosity of 4.5×10-3 N/m. The encapsulated plate provided local flow information along the length of a microfluidic channel.

Published in:

Microelectromechanical Systems, Journal of  (Volume:13 ,  Issue: 4 )