Cart (Loading....) | Create Account
Close category search window
 

A direct energy balance method for approximating envelope decay of oscillating MEMS structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lish, C.A. ; Aspen Sci. Design Inc., Nashua, NH, USA

The real pole component (envelope decay coefficient) of all oscillating microelectromechanical systems (MEMS) structure is calculated directly in the energy domain without using an equation of motion. Similar to the simplified Rayleigh frequency calculation in which maximum potential and kinetic energy are equated, our method equates the initial minus dissipated energy to present energy.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.