By Topic

Contact analysis and mathematical modeling of traveling wave ultrasonic motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Meiling Zhu ; Inst. B of Mech., Stuttgart Univ., Germany

An analysis of the contact layer and a mathematical modeling of traveling wave ultrasonic motors (TWUM) are presented for the guidance of the design of contact layer and the analyses of the influence of the compressive force and contact layer on motor performance. The proposed model starts from a model previously studied but differs from that model in that it adds the analysis of the contact layer and derives the steady-state solutions of the nonlinear equations in the frequency domain, rather than in the time domain, for the analyses of vibrational responses of the stator and operational characteristics of the motor. The maximum permissible compressive force of the motor, the influences of the contact layer material, the thickness of the contact layer, and the compressive force on motor performance have been discussed. The results show that by using the model, one can understand the influence of the compressive force and contact layer material on motor performance, guide the choice of proper contact layer material, and calculate the maximum permissible compressive force and starting voltage.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 6 )