Cart (Loading....) | Create Account
Close category search window

Finite element modelling of nanostructured piezoelectric resonators (NAPIERs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Southin, J.E.A. ; Cranfield Univ., Bedford, UK ; Whatmore, R.W.

A new modification to the traditional piezoelectric thin film bulk acoustic wave resonator (FBAR) and solidly mounted acoustic wave resonator (SMR) is proven to significantly improve their performances. The proposed design involves the surface micro/nano structuring of planar piezoelectric thin films to realize an array of a large number of rod-like structures. In contrast to the plate-like thickness extensional resonance in traditional FBAR and SMR devices, the rod-like structures can be excited in their length extensional resonance, yielding a higher electromechanical coupling factor and effectively eliminating the spurious resonances from lateral modes of vibration. The designs have been investigated by two and three-dimensional finite element analyses and one-dimensional transmission-line modelling. The results show that significant increases in the electromechanical coupling factor of ca. 40% can be achieved by using the rod-like length extensional resonances as compared with the plate-like thickness extensional resonances in traditional devices. Simulations show that rod width-to-thickness aspect ratios of less than 0.5 could result in an electromechanical coupling factor (k/sub eff//sup 2/) of over 10% for a zinc oxide device, compared with approximately 7% for a conventional design.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.