Cart (Loading....) | Create Account
Close category search window
 

Materials, processes and reliability of mixed-signal substrates for SOP technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
9 Author(s)
Mahalingam, S. ; Comput.-Aided Simulation of Packaging Reliability Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Hegde, S. ; Ahmad, J. ; Pucha, R.V.
more authors

Materials, processes and reliability challenges in mixed-signal (Digital, Optical and RF) microvia substrates for System-on-a-package (SOP) technology are presented. Models and methodologies to thermo-mechanically evaluate the microvia substrate reliability are discussed. Upfront process mechanics models with design of simulations approach are presented to evaluate various dielectrics and substrate materials with respect to warpage, dielectric cracking and microvia reliability in multi-layered microvia boards. Systematic optimization studies are conducted to arrive at appropriate set of material and geometry parameters to minimize the inelastic strain in the microvias, the film stress in the dielectric, and the warpage in the substrate. The test vehicles are subjected to liquid-to-liquid thermal shock cycles between -55°C to 125°C to assess reliability and model validation. Material length scale effects due to reduced feature sizes of microvias (10 microns or less) are addressed through computational algorithms to simulate the increased plastic strain hardening effects due to spatial strain gradients. System-level mixed-signal reliability is also discussed taking into consideration component-level reliability as well as statistical implications.

Published in:

Electronic Components and Technology Conference, 2004. Proceedings. 54th  (Volume:2 )

Date of Conference:

1-4 June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.