By Topic

Integration of unsupervised clustering, interaction and parallel coordinates for the exploration of large multivariate data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Johansson ; Linkoping Univ., Sweden ; R. Treloar ; M. Jern

Parallel coordinates are widely used in many applications for visualization of multivariate data. Because of the nature of parallel coordinates, the visualization technique is often used for data overview. However, when the number of tuples to be visualized becomes very large, this technique makes it difficult to distinguish the overall structure. In This work we present a novel technique which uses a classification approach, the self-organizing map (an unsupervised learning algorithm), to solve this problem by creating an initial clustering of the data. By initially only visualizing the resulting representational clusters, the inherited global structure can be shown. Using linked views and allowing the user to perform drill-down and filtering on these representations reveals the single data items without loss of context.

Published in:

Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on

Date of Conference:

14-16 July 2004