By Topic

An experimental study of the enhancement of air-cooling limits for telecom/datacom heat sinks applications using an impinging air jet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sansoucy, E. ; Dept. of Mech. Eng., Ottawa Univ., Ont., Canada ; Oosthuizen, P.H. ; Refai-Ahmed, G.

An experimental study was conducted to investigate the heat transfer from a parallel flat plate heat sink under a turbulent impinging air jet. A horizontal nozzle plate confined the target surface. The jet was discharged from a sharp-edged nozzle in the nozzle plate. Average Nusselt numbers are reported for Pr=0.7, 5000≤Re≤30000, L/d=2.5 and 0.833 at H/d=3 where L, H and d define the length of the square heat source, nozzle-to-target spacing and nozzle diameter, respectively. Tests were also conducted for an impinging flow over a flat plate, flush with the top surface of the target plate. The average Nusselt numbers from the heat sink were compared to those for a flat plate to determine the overall performance of the heat sink in a confined impingement arrangement. The experimental results were compared with the numerical predictions obtained in an earlier study.

Published in:

Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM '04. The Ninth Intersociety Conference on

Date of Conference:

1-4 June 2004