By Topic

Taking evolutionary circuit design from experimentation to implementation: some useful techniques and a silicon demonstration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
A. Stoica ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; R. S. Zebulum ; X. Guo ; D. Keymeulen
more authors

Current techniques in evolutionary synthesis of analogue and digital circuits designed at transistor level have focused on achieving the desired functional response, without paying sufficient attention to issues needed for a practical implementation of the resulting solution. No silicon fabrication of circuits with topologies designed by evolution has been done before, leaving open questions on the feasibility of the evolutionary circuit design approach, as well as on how high-performance, robust, or portable such designs could be when implemented in hardware. It is argued that moving from evolutionary 'design-for-experimentation' to 'design-for-implementation' requires, beyond inclusion in the fitness function of measures indicative of circuit evaluation factors such as power consumption and robustness to temperature variations, the addition of certain evaluation techniques that are not common in conventional design. Several such techniques that were found to be useful in evolving designs for implementation are presented; some are general, and some are particular to the problem domain of transistor-level logic design, used here as a target application. The example used here is a multifunction NAND/NOR logic gate circuit, for which evolution obtained a creative circuit topology more compact than what has been achieved by multiplexing a NAND and a NOR gate. The circuit was fabricated in a 0.5 μm CMOS technology and silicon tests showed good correspondence with the simulations.

Published in:

IEE Proceedings - Computers and Digital Techniques  (Volume:151 ,  Issue: 4 )