By Topic

Computational modeling evidence of a nonthermal electromagnetic interaction mechanism with living cells: microwave nonlinearity in the cellular sodium ion channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stoykov, N.S. ; Rehabilitation Inst. of Chicago, IL, USA ; Jerome, J.W. ; Pierce, L.C. ; Taflove, Allen

A computational hydrodynamics model consisting of a system of four coupled time-domain partial differential equations is applied to study the response of the cellular sodium ion channel to a microwave electric-field excitation. The model employs a dynamic conservation law formulation, which has not been previously applied to this problem. Results indicate that the cellular sodium ion channel exhibits an electrical nonlinearity at microwave frequencies, which generates an intermodulation spectrum when excited by an amplitude-modulated electric field. Intermodulation products having frequencies down to 50 MHz, and very likely well below 50 MHz, appear possible. This is a new nonthermal microwave interaction mechanism with living tissues that, if observable below 0.1 MHz, could enable the stimulation of excitable biological tissues, and thereby have significant implications for human health and safety.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 8 )