By Topic

Evolutionary-programming-based optimization of reduced-rank adaptive filters for reference generation in active power filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ovaska, S.J. ; Inst. of Intelligent Power Electron., Helsinki Univ. of Technol., Espoo, Finland ; Vainio, O.

We introduce an evolutionary-programming-based method for designing robust and computationally efficient adaptive bandpass filters. These predictive filters are optimized for generating current references in active power filters (APFs). The accuracy (phase/amplitude) of the reference current is crucial in current-injection-type systems, because it directly affects the harmonics reduction ability of the APF. Our digital filtering approach has the following advantages: selective bandpass response, efficient attenuation of specific harmonic components, capability to handle typical frequency alteration, small number of multiplications, and structural simplicity. In addition, practically no prior knowledge of the electricity distribution network and its loading characteristics is needed for designing the current reference generator. In an illustrative example, the total harmonic distortion of an artificial current waveform was reduced from 36.7% to less than 3.7% within the line frequency range 49-51 Hz. The proposed scheme is a combination of the hard-computing (HC)-type multiplicative general parameter method and evolutionary programming that, on the other hand, is a constituent of soft computing (SC). Such open-minded fusion thinking is emerging among researchers and engineers, and it can potentially lead to efficient combinations of HC and SC methodologies*both on the algorithm level and on the system level.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:51 ,  Issue: 4 )