By Topic

Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Marsland ; Inst. of Inf. Sci., Massey Univ., Palmerston North, New Zealand ; C. J. Twining

Groupwise nonrigid registrations of medical images define dense correspondences across a set of images, defined by a continuous deformation field that relates each target image in the group to some reference image. These registrations can be automatic, or based on the interpolation of a set of user-defined landmarks, but in both cases, quantifying the normal and abnormal structural variation across the group of imaged structures implies analysis of the set of deformation fields. We contend that the choice of representation of the deformation fields is an integral part of this analysis. This paper presents methods for constructing a general class of multi-dimensional diffeomorphic representations of deformations. We demonstrate, for the particular case of the polyharmonic clamped-plate splines, that these representations are suitable for the description of deformations of medical images in both two and three dimensions, using a set of two-dimensional annotated MRI brain slices and a set of three-dimensional segmented hippocampi with optimized correspondences. The class of diffeomorphic representations also defines a non-Euclidean metric on the space of patterns, and, for the case of compactly supported deformations, on the corresponding diffeomorphism group. In an experimental study, we show that this non-Euclidean metric is superior to the usual ad hoc Euclidean metrics in that it enables more accurate classification of legal and illegal variations.

Published in:

IEEE Transactions on Medical Imaging  (Volume:23 ,  Issue: 8 )