By Topic

Channel-adaptive resource allocation for scalable video transmission over 3G wireless network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qian Zhang ; Microsoft Res. Asia, Beijing, China ; Zhu, Wenwu ; Ya-Qin Zhang

The paper addresses the important issues of resource allocation for scalable video transmission over third generation (3G) wireless networks. By taking the time-varying wireless channel/network condition and scalable video codec characteristic into account, we allocate resources between source and channel coders based on the minimum-distortion or minimum-power consumption criterion. Specifically, we first present how to estimate the time-varying wireless channel/network condition through measurements of throughput and error rate in a 3G wireless network. Then, we propose a new distortion-minimized bit allocation scheme with hybrid unequal error protection (UEP) and delay-constrained automatic repeat request (ARQ), which dynamically adapts to the estimated time-varying network conditions. Furthermore, a novel power-minimized bit allocation scheme with channel-adaptive hybrid UEP and delay-constrained ARQ is proposed for mobile devices. In our proposed distortion/power-minimized bit-allocation scheme, bits are optimally distributed among source coding, forward error correction, and ARQ according to the varying channel/network condition. Simulation and analysis are performed using a progressive fine granularity scalability video codec. The simulation results show that our proposed schemes can significantly improve the reconstructed video quality under the same network conditions.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:14 ,  Issue: 8 )