By Topic

Emerging SiGe HBT reliability issues for mixed-signal circuit applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. D. Cressler ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA

We review the emerging reliability issues associated with high-performance SiGe HBT technologies which are being increasingly deployed in a wide variety of mixed-signal circuit applications. For the purposes of this work, we define the concept of device "reliability" to be broader than its standard usage in the industry, to include all possible transistor degradation mechanisms, for all possible mixed-signal circuit designs, in any of the various intended mixed-signal applications. For instance, in addition to classical device reliability mechanisms associated with reverse emitter-base and high forward current density stress, new reliability issues for SiGe HBTs, including impact-ionization induced "mixed-mode" stress, scaling-induced breakdown voltage compression and operating point instabilities, geometrical scaling-induced low-frequency noise variations, and the impact of ionizing radiation on device and circuit reliability, are also addressed.

Published in:

IEEE Transactions on Device and Materials Reliability  (Volume:4 ,  Issue: 2 )