By Topic

Collaborative sensor networking towards real-time acoustical beamforming in free-space and limited reverberance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bergamo, P. ; Dept. of Comput. Sci., UCLA, Los Angeles, CA, USA ; Asgari, S. ; Hanbiao Wang ; Maniezzo, D.
more authors

Wireless sensor networks have been attracting increasing research interest given the recent advances in microelectronics, array processing, and wireless networking. Consisting of a large collection of small, wireless, low-cost, integrated sensing, computing and communicating nodes capable of performing various demanding collaborative space-time processing tasks, wireless sensor network technology poses various unique design challenges, particularly for real-time operation. We review the approximate maximum-likelihood (AML) method for source localization and direction-of-arrival (DOA) estimation. Then, we consider the use of least-squares method (LS) method applied to DOA bearing crossings to perform source localization. A novel virtual array model applicable to the AML-DOA estimation method is proposed for reverberant scenarios. Details on the wireless acoustical testbed are given. We consider the use of Compaq iPAQ 3760s, which are handheld, battery-powered device normally meant to be used as personal organizers (PDAs), as sensor nodes. The iPAQ provide a reasonable balance of cost, availability, and functionality. It has a build in StrongARM processor, microphone, codec for acoustic acquisition and processing, and a PCMCIA bus for external IEEE 802.11b wireless cards for radio communication. The iPAQs form a distributed sensor network to perform real-time acoustical beamforming. Computational times and associated real-time processing tasks are described. Field measured results for linear, triangular, and square subarrays in free-space and reverberant scenarios are presented. These results show the effective and robust operation of the proposed algorithms and their implementations on a real-time acoustical wireless testbed.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:3 ,  Issue: 3 )