By Topic

A support-ordered trie for fast frequent itemset discovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yew-Kwong Woon ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Wee-Keong Ng ; Ee-Peng Lim

The importance of data mining is apparent with the advent of powerful data collection and storage tools; raw data is so abundant that manual analysis is no longer possible. Unfortunately, data mining problems are difficult to solve and this prompted the introduction of several novel data structures to improve mining efficiency. Here, we critically examine existing preprocessing data structures used in association rule mining for enhancing performance in an attempt to understand their strengths and weaknesses. Our analyses culminate in a practical structure called the SOTrielT (support-ordered trie itemset) and two synergistic algorithms to accompany it for the fast discovery of frequent itemsets. Experiments involving a wide range of synthetic data sets reveal that its algorithms outperform FP-growth, a recent association rule mining algorithm with excellent performance, by up to two orders of magnitude and, thus, verifying its' efficiency and viability.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 7 )