By Topic

Effectiveness of the backoff hierarchical class n-gram language models to model unseen events in speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zitouni, I. ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; Kuo, Hong-Kwang Jeff

Backoff hierarchical class n-gram language models use a class hierarchy to define an appropriate context. Each node in the hierarchy is a class containing all the words of the descendant nodes (classes). The closer a node is to the root, the more general the corresponding class, and consequently the context, is. We demonstrate experimentally the effectiveness of the backoff hierarchical class n-gram language modeling approach to model unseen events in speech recognition: improvement is achieved over regular backoff n-gram models. We also study the performance of this approach on vocabularies of different sizes and we investigate the impact of the hierarchy depth on the performance of the model. Performance is presented on several databases such as switchboard, call-home and Wall Street Journal (WSJ). Experiments on switchboard and call-home databases, which contain a few unseen events in the test set, show up to 6% improvement on unseen events perplexity with a vocabulary of 16,800 words. With a relatively large number of unseen events on the WSJ test corpus and using two vocabulary sets of 5,000 and 20,000 words, we obtain up to 26% improvement on unseen events perplexity and up to 12% improvement in WER when a backoff hierarchical class trigram language model is used on an ASR test set. Results confirm that improvement is achieved when the number of unseen events increases.

Published in:

Automatic Speech Recognition and Understanding, 2003. ASRU '03. 2003 IEEE Workshop on

Date of Conference:

30 Nov.-3 Dec. 2003