By Topic

Development of flexible microactuator and its applications to robotic mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suzumori, K. ; Toshiba Corp., Kawasaki, Japan ; Iikura, S. ; Tanaka, H.

A flexible microactuator (FMA) driven by an electropneumatic (or electrohydraulic) system has been developed. The FMA has three degrees of freedom, pitch, yaw, and stretch, and these are suitable movements for miniature robotic mechanisms such as fingers, arms, or legs. The construction is of fiber-reinforced rubber, and the mechanism is very simple. Gentle miniature robots with no conventional links can be designed using this design. The FMA's basic characteristics and its applications to certain robot mechanisms are presented. Serially connected FMAs act as a miniature robot manipulator. The kinematics and control algorithm for this type of robot are presented. FMAs combined in parallel act as a multifingered robot hand, with each FMA representing a finger. An algorithm for the cooperative control of such FMAs, the stable region for holding, and its performance are presented

Published in:

Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on

Date of Conference:

9-11 Apr 1991