By Topic

High heat flux cooling solutions for thermal management of high power density gallium nitride HEMT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Bhunia ; Rockwell Sci. Co., Thousand Oaks, CA, USA ; K. Boutros ; Chung-Lung Chen

A package (base plate) level thermal management of high power density GaN High-Electron-Mobility-Transistors (HEMTs) is carried out by liquid micro-jet impingement and its subsequent phase change. Implemented on a 64-gate (9.6 mm gate periphery) device, the cooling technique demonstrates a 43% improvement in power density compared to the traditional air-cooling. Performance improvement could be significantly higher in a Monolithic Microwave Integrated Circuit (MMIC) where the internal thermal resistance (junction to case) of the device is much lower. In parallel, a high fidelity computational model is developed to explore the thermal field within the device and the peak device junction temperature. Practical methods to reduce the device temperature, such as variation of substrate thickness, are established through numerical simulation. For example, a 24% reduction in junction temperature or a 33% gain in power density is shown by reducing the SiC substrate thickness from 400 μm to 75 μm. Temperature rise due to local micro-scale hot spots (gate), gate-to-gate thermal interaction, and their combined effect towards peak junction temperature are investigated at various power levels.

Published in:

Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM '04. The Ninth Intersociety Conference on  (Volume:2 )

Date of Conference:

1-4 June 2004