By Topic

Correlation-based feature detection using pulsed neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Heittmann ; Corp. Res. Syst. Technol., Infineon Technol. AG, Munich, Germany ; U. Ramacher

The feature extraction and detection in visual scenes set up the basis for robust image processing and scene analysis. While the receptive fields of simple cells in the visual cortex are modeled by Gabor functions, simple cells are commonly treated as linear filters. In this paper, we demonstrate how the non-linear operations on pulses like correlation, synchronization and detection of decorrelation can be used for implementation of feature detectors. Using essentially two data-driven adaption rules dependent on dendritic currents and to membrane potentials, linear detection of intensity gradients can be realized. As a technical application, a feature detector sensitive to orientation is presented.

Published in:

Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on

Date of Conference:

17-19 Sept. 2003