By Topic

Mining version histories to guide software changes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zimmermann, T. ; Saarland Univ., Saarbrucken, Germany ; Weibgerber, P. ; Diehl, S. ; Zeller, A.

We apply data mining to version histories in order to guide programmers along related changes: "Programmers who changed these functions also changed. . . ". Given a set of existing changes, such rules (a) suggest and predict likely further changes, (b) show up item coupling that is indetectable by program analysis, and (c) prevent errors due to incomplete changes. After an initial change, our ROSE prototype can correctly predict 26% of further files to be changed - and 15% of the precise functions or variables. The topmost three suggestions contain a correct location with a likelihood of 64%.

Published in:

Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on

Date of Conference:

23-28 May 2004