By Topic

Performance analysis of multicarrier frequency-hopping (MC-FH) code-division multiple-access systems: uncoded and coded schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Ebrahimi ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; M. Nasiri-Kenari

In this paper, we provide multiuser performance analysis of a multicarrier frequency-hopping (MC-FH) code-division multiple-access system as first introduced in the work of Lance and Kaleh. We propose to use a practical low-rate convolutional error-correcting code in this system, which does not require any additional bandwidth than what is needed by the frequency-hopping spread-spectrum modulation. We provide multiuser exact performance analysis of the system for both uncoded and coded schemes in additive white Gaussian noise and fading channels for a single-user correlator receiver. We also derive the performance analysis of the system based on a Gaussian distribution assumption for multiuser interference at the receiver output. Our numerical results first indicate that the coded scheme significantly increases the number of users supported by the system at a fixed bit error rate, in comparison with the uncoded MC-FH scheme. Moreover, it shows that the Gaussian analysis in some cases does not accurately predict the number of users supported by the system.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:53 ,  Issue: 4 )