By Topic

Suppressing opposite-direction interference in TDD/CDMA systems with asymmetric traffic by antenna beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chiung-Jang Chen ; Nat. Chiao Tung Univ., Taiwan, Taiwan ; Li-Chun Wang

One of the key advantages for the time-division duplex (TDD) system is the capability to deliver asymmetric traffic services by allocating different numbers of uplink and downlink time slots. However, in a TDD/code-division multiple-access (CDMA) system, asymmetric traffic may result in severe opposite-direction interference because downlink transmitted signals from neighboring base stations may interfere with the uplink received signals of the home cell. In this paper, we investigate the effect of four-antenna beamforming schemes from the perspective of suppressing the opposite-direction interference. We compare the uplink bit energy-to-interference density ratio of a traditional beam-steering technique (Scheme I) with that of the minimum-variance distortionless-response (MVDR) beamformer (Scheme II). Furthermore, Scheme III applies the conventional beam-steering technique for both downlink transmissions and the uplink reception. In Scheme IV, we implement beam-steering for downlink transmissions, while adopting the MVDR beamformer to process the uplink signals received at base stations. Our numerical results indicate that Scheme IV outperforms all the other three schemes, which can effectively suppress the strong opposite-direction interference in TDD/CDMA systems. While keeping low implementation costs in mind, employing the simpler Scheme III in a sectorized cellular system can also allow every cell to provide different rates of asymmetric traffic services.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 4 )