By Topic

Optimum beamforming for pre-FFT OFDM adaptive antenna array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Budsabathon, M. ; Dept. of Electron., Osaka Univ., Japan ; Hara, Y. ; Hara, S.

It is well known that orthogonal frequency-division multiplexing (OFDM) is robust to frequency-selective fading in wireless channels due to the exploitation of a guard interval that is inserted at the beginning of each OFDM symbol. However, once delayed signals beyond the guard interval are introduced in a channel with a large delay spread, intersymbol interference causes a severe degradation in the transmission performance. In this paper, we propose a novel pre-fast Fourier transform (FFT) OFDM adaptive antenna array, which requires only one FFT processor at a receiver, for suppressing such delayed signals. We derive the optimum weight set for beamformers based on the maximum signal-to-noise-and-interference power ratio (Max-SNIR) and the minimum mean square error (mmse) criteria, respectively. In addition, we propose a novel mmse-criterion-based commutative optimization scheme, which is more robust to the estimation error of the channel state information. Furthermore, we show the equivalence between the Max-SNIR-criterion-based scheme and the proposed commutative optimization scheme. Computer simulation results show its good performance even in channels where directions of arrival of arriving waves are randomly determined.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 4 )