By Topic

Quasicyclic low-density parity-check codes from circulant permutation matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fossorier, M.P.C. ; Dept. of Electr. Eng., Univ. of Hawaii, Honolulu, HI, USA

In this correspondence, the construction of low-density parity-check (LDPC) codes from circulant permutation matrices is investigated. It is shown that such codes cannot have a Tanner graph representation with girth larger than 12, and a relatively mild necessary and sufficient condition for the code to have a girth of 6, 8,10, or 12 is derived. These results suggest that families of LDPC codes with such girth values are relatively easy to obtain and, consequently, additional parameters such as the minimum distance or the number of redundant check sums should be considered. To this end, a necessary condition for the codes investigated to reach their maximum possible minimum Hamming distance is proposed.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 8 )