By Topic

Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Artigas, D. ; Dept. of Signal Theor. & Commun., Univ. Politecnica de Catalunya, Barcelona, Spain ; Rafailov, E.U. ; Loza-Alvarez, Pablo ; Sibbett, W.

In this paper, we report on the analytical study of a first-order quasi-phase-matched structure based on a periodically switched nonlinearity. The general average equations describing parametric wave interaction for this structure are obtained. The theoretical results are then used to analyze the special case of a device based on a semiconductor AlxGa1-xAs waveguide for efficient frequency doubling in the mid-infrared to the far-infrared range. The necessary conditions to obtain an optimal configuration are discussed in both continuous wave and femtosecond-pulse regimes. Our analysis indicates that the conversion efficiency obtained should significantly exceed the efficiency obtained with a periodically poled lithium niobate crystal at long wavelengths. Finally, we include the preliminary results of the experimental demonstration of a waveguide device based on alternating domains of GaAs and Al0.4Ga0.6As.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 8 )