Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Physical random number generator based on MOS structure after soft breakdown

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yasuda, S. ; Corp. R&D Center, Kawasaki, Japan ; Satake, H. ; Tanamoto, T. ; Ohba, Ryuji
more authors

We present a novel physical random number generator (RNG) that uses a metal-oxide semiconductor (MOS) capacitor after soft breakdown (SBD) as a random source. It is known that the electrical properties of MOS capacitors after SBD show large fluctuation. When the resistor in an astable multivibrator is replaced with an MOS capacitor after SBD, the multivibrator converts the noise signal into a rectangular wave whose period fluctuates randomly. A 1-bit counter and a flip-flop are used to generate random numbers from the fluctuating rectangular wave. Some high-level tests indicate that the generated random numbers have excellent quality for cryptographic applications. Even though our circuit is small and can be constructed using about 20 complementary-MOS logic gates and several passive devices, high-quality random numbers such as those generated by large physical RNGs can be obtained.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 8 )