By Topic

Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Li Yang ; Dept. of Comput. Sci., Western Michigan Univ., Kalamazoo, MI, USA

A distance-preserving method is presented to map high-dimensional data sequentially to low-dimensional space. It preserves exact distances of each data point to its nearest neighbor and to some other near neighbors. Intrinsic dimensionality of data is estimated by examining the preservation of interpoint distances. The method has no user-selectable parameter. It can successfully project data when the data points are spread among multiple clusters. Results of experiments show its usefulness in projecting high-dimensional data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 9 )