Cart (Loading....) | Create Account
Close category search window
 

An efficient algorithm for discovering frequent subgraphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuramochi, M. ; Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA ; Karypis, G.

Over the years, frequent itemset discovery algorithms have been used to find interesting patterns in various application areas. However, as data mining techniques are being increasingly applied to nontraditional domains, existing frequent pattern discovery approaches cannot be used. This is because the transaction framework that is assumed by these algorithms cannot be used to effectively model the data sets in these domains. An alternate way of modeling the objects in these data sets is to represent them using graphs. Within that model, one way of formulating the frequent pattern discovery problem is that of discovering subgraphs that occur frequently over the entire set of graphs. We present a computationally efficient algorithm, called FSG, for finding all frequent subgraphs in large graph data sets. We experimentally evaluate the performance of FSG using a variety of real and synthetic data sets. Our results show that despite the underlying complexity associated with frequent subgraph discovery, FSG is effective in finding all frequently occurring subgraphs in data sets containing more than 200,000 graph transactions and scales linearly with respect to the size of the data set.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 9 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.