By Topic

Estimating the number of signals in presence of colored noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pinyuen Chen ; Dept. of Math., Syracuse Univ., NY, USA ; Genello, G.R.J. ; Wicks, M.C.

In this paper, statistical ranking and selection theory is used to estimate the number of signals present in colored noise. The data structure follows the well-known Multiple Signal Classification (MUSIC) model. We deal with the eigenanalyses of a matrix, using the MUSIC model and colored noise. The data matrix can be written as the product of a covariance matrix and the inverse of second covariance matrix. We propose a multistep selection procedure to construct a confidence interval on the number of signals present in a data set. Properties of this procedure are stated and proved. Those properties are used to compute the required parameters (procedure constants). Numerical examples are given to illustrate our theory.

Published in:

Radar Conference, 2004. Proceedings of the IEEE

Date of Conference:

26-29 April 2004