By Topic

Performance of work conserving schedulers and scheduling of some synchronous dataflow graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
U. Kanade ; Codito Technol. Pvt. Ltd., Pune, India

We know a lot about competitive or approximation ratios of scheduling algorithms. This, though, cannot be translated into direct bounds on the schedule produced by a scheduling algorithm, because often the optimal solution is intractable. We derive a methodology to find absolute bounds on the scheduling of jobs with precedence constraints on parallel identical machines. Our bounds hold for a large class of online and offline scheduling algorithms: the "work conserving" scheduling algorithms. We apply this methodology to prove that an important class of synchronous dataflow graphs $the parallelized pipelines -has very good performance characteristics when scheduled by a work conserving scheduler. Real time guarantees and granularity design for these dataflow graphs are discussed. We argue that parallelized pipelines should be dynamically scheduled on multiprocessor architectures.

Published in:

Parallel and Distributed Systems, 2004. ICPADS 2004. Proceedings. Tenth International Conference on

Date of Conference:

7-9 July 2004