By Topic

Microwave reflection properties of concrete periodically exposed to chloride solution of 3% salinity and compression force

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Case, J.T. ; Electr. & Comput. Eng. Dept., Univ. of Missouri-Rolla, Rolla, MO, USA ; Peer, S. ; Gallaher, E. ; Zoughi, R.

Corrosion of steel rebar in a concrete structure compromises its structural integrity and hence its performance. Chloride intrusion into concrete can lead to depassivation of the steel and initiation of corrosion. Methods exist to detect chlorides in concrete, but the practical use of many of these may be problematic because they are destructive and time consuming, and cannot be used to analyze large structures. Microwave nondestructive evaluation techniques applied to mortar have proven successful for detecting mixture constituents, chloride ingress, and cure-state monitoring. In this paper several concrete samples are cyclically soaked in distilled water and saltwater while also experiencing compression force. Compression force, simulating in-service loading, results in increased microcracking and permeability, which promotes chloride ingress. The daily microwave reflection properties of these samples were measured at 3 GHz. The results show the capability of these microwave measurements for detecting the increased level of chloride permeation as a function of increasing number of soaking cycles. In addition, comparisons between the reflection properties of mortar and concrete cubes soaked in distilled water exhibit similarity in trends, indicating that the various phenomena that occur within them are systematically similar.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:53 ,  Issue: 4 )