By Topic

Iterative learning algorithms for linear Gaussian observation models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Guang Deng ; Dept. of Electron. Eng., La Trobe Univ., Bundoora, Vic., Australia

In this paper, we consider a signal/parameter estimation problem that is based on a linear model structure and a given setting of statistical models with unknown hyperparameters. We consider several combinations of Gaussian and Laplacian models. We develop iterative algorithms based on two typical machine learning methods - the evidence-based method and the integration-based method - to deal with the hyperparameters. We have applied the proposed algorithms to adaptive prediction and wavelet denoising. In linear prediction, we show that the proposed algorithms are efficient tools for tackling a difficult problem of adapting simultaneously the order and the coefficients of the predictor. In wavelet denoising, we show that by using the proposed algorithms, the noisy wavelet coefficients are subject to shrinkage and thresholding.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 8 )