By Topic

Stochastic correlative learning algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haykin, Simon ; Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada ; Zhe Chen ; Becker, S.

This paper addresses stochastic correlative learning as the basis for a broadly defined class of statistical learning algorithms known collectively as the algorithm of pattern extraction (ALOPEX) family. Starting with the neurobiologically motivated Hebb's rule, the two conventional forms of the ALOPEX algorithm are derived, followed by a modified variant designed to improve the convergence speed. We next describe two more elaborate versions of the ALOPEX algorithm, which incorporate particle filtering that exemplifies a form of Monte Carlo simulation, to exchange computational complexity for an improved convergence and tracking behavior. In support of the different forms of the ALOPEX algorithm developed herein, we present three different experiments using synthetic and real-life data on binocular fusion of stereo images, on-line prediction, and system identification.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 8 )