By Topic

Linear minimax regret estimation of deterministic parameters with bounded data uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eldar, Y.C. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Ben-Tal, A. ; Nemirovski, A.

We develop a new linear estimator for estimating an unknown parameter vector x in a linear model in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-case regret over all bounded data vectors, namely, the worst-case difference between the mean-squared error (MSE) attainable using a linear estimator that does not know the true parameters x and the optimal MSE attained using a linear estimator that knows x. We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 8 )