By Topic

Simultaneous routing and resource allocation via dual decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin Xiao ; Dept. of Aeronaut. & Astronaut., Stanford Univ., CA, USA ; Johansson, M. ; Boyd, S.P.

In wireless data networks, the optimal routing of data depends on the link capacities which, in turn, are determined by the allocation of communications resources (such as transmit powers and bandwidths) to the links. The optimal performance of the network can only be achieved by simultaneous optimization of routing and resource allocation. In this paper, we formulate the simultaneous routing and resource allocation (SRRA) problem, and exploit problem structure to derive efficient solution methods. We use a capacitated multicommodity flow model to describe the data flows in the network. We assume that the capacity of a wireless link is a concave and increasing function of the communications resources allocated to the link, and the communications resources for groups of links are limited. These assumptions allow us to formulate the SRRA problem as a convex optimization problem over the network flow variables and the communications variables. These two sets of variables are coupled only through the link capacity constraints. We exploit this separable structure by dual decomposition. The resulting solution method attains the optimal coordination of data routing in the network layer and resource allocation in the radio control layer via pricing on the link capacities.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 7 )