By Topic

A novel multiplexer-based low-power full adder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yingtao Jiang ; Dept. of Electr. & Comput. Eng., Univ. of Nevada, Las Vegas, NV, USA ; Al-Sheraidah, A. ; Wang, Yuke ; Sha, E.
more authors

The 1-bit full adder circuit is a very important component in the design of application specific integrated circuits. This paper presents a novel low-power multiplexer-based 1-bit full adder that uses 12 transistors (MBA-12T). In addition to reduced transition activity and charge recycling capability, this circuit has no direct connections to the power-supply nodes, leading to a noticeable reduction in short-current power consumption. Intensive HSPICE simulation shows that the new adder has more than 26% in power savings over conventional 28-transistor CMOS adder and it consumes 23% less power than 10-transistor adders (SERF and 10T ) and is 64% faster.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:51 ,  Issue: 7 )