By Topic

Rotor temperature estimation of squirrel-cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kral, C. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Habetler, T.G. ; Harley, R.G. ; Pirker, F.
more authors

This paper deals with a rotor temperature estimation scheme for fan-cooled mains-fed squirrel-cage induction motors. The proposed technique combines a rotor resistance estimation method with a thermal equivalent circuit. Usually, rotor resistance estimation works quite well under rated load conditions. By contrast, if the motor is slightly loaded, rotor resistance estimation becomes inaccurate due to the small slip. Therefore, rotor temperature estimation under low-load conditions may be estimated by a thermal equivalent model. In order to determine the rotor resistance and, thus, rotor temperature accurately, several machine parameters have to be obtained in advance. Load tests provide the leakage reactance and the iron losses of the induct machine. The stator resistance has to be measured separately. The parameters of the thermal equivalent model are a thermal resistance and a thermal capacitance. These parameters are derived from a heating test, where the reference temperature is provided from the parameter model in the time domain. This lumped thermal parameter model is based on the assumption that the total rotor temperature increase is caused by the total sum of the losses in the induction machine. Measuring results of a 1.5-kW and an 18.5-kW four-pole low-voltage motor and a 210-kW four-pole high-voltage motor are presented and compared.

Published in:

Industry Applications, IEEE Transactions on  (Volume:40 ,  Issue: 4 )