Cart (Loading....) | Create Account
Close category search window
 

Recognizing plankton images from the shadow image particle profiling evaluation recorder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tong Luo ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Kramer, K. ; Goldgof, D.B. ; Hall, L.O.
more authors

We present a system to recognize underwater plankton images from the shadow image particle profiling evaluation recorder (SIPPER). The challenge of the SIPPER image set is that many images do not have clear contours. To address that, shape features that do not heavily depend on contour information were developed. A soft margin support vector machine (SVM) was used as the classifier. We developed a way to assign probability after multiclass SVM classification. Our approach achieved approximately 90% accuracy on a collection of plankton images. On another larger image set containing manually unidentifiable particles, it also provided 75.6% overall accuracy. The proposed approach was statistically significantly more accurate on the two data sets than a C4.5 decision tree and a cascade correlation neural network. The single SVM significantly outperformed ensembles of decision trees created by bagging and random forests on the smaller data set and was slightly better on the other data set. The 15-feature subset produced by our feature selection approach provided slightly better accuracy than using all 29 features. Our probability model gave us a reasonable rejection curve on the larger data set.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 4 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.