By Topic

Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. S. Ge ; Nat. Univ. of Singapore, Singapore ; Jin Zhang ; Tong Heng Lee

In this paper, adaptive neural network (NN) control is investigated for a class of multiinput and multioutput (MIMO) nonlinear systems with unknown bounded disturbances in discrete-time domain. The MIMO system under study consists of several subsystems with each subsystem in strict feedback form. The inputs of the MIMO system are in triangular form. First, through a coordinate transformation, the MIMO system is transformed into a sequential decrease cascade form (SDCF). Then, by using high-order neural networks (HONN) as emulators of the desired controls, an effective neural network control scheme with adaptation laws is developed. Through embedded backstepping, stability of the closed-loop system is proved based on Lyapunov synthesis. The output tracking errors are guaranteed to converge to a residue whose size is adjustable. Simulation results show the effectiveness of the proposed control scheme.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 4 )