Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Experimental matched-field localization results using a short vertical array and mid-frequency signals in shallow water

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Suppappola, S.B. ; Submarine Sonar Dept., Naval Undersea Warfare Center, Newport, RI, USA ; Harrison, B.F.

Traditionally, matched-field processing (MFP) has been used to localize low-frequency sources (e.g., <300 Hz) from their acoustic signals received on long vertical arrays. However, some sources emit acoustic signals of much higher frequency. Applying MFP to signals in the mid-frequency range (e.g., 1-4 kHz) is a very challenging problem because MFP's sensitivity to environmental parameter mismatch becomes more severe with increasing frequency. Robust MFP techniques are required to process signals in the mid-frequency range. As a practical issue, short vertical arrays are more convenient to work with than are long vertical arrays; they are easier to deploy and are less prone to large amounts of deformation. However, short vertical arrays undersample the water column, which can result in severely degraded MFP performance. In this paper, we present experimental data results for this nonconventional paradigm. Using the environmentally robust broad-band L-norm estimator, MFP results are given using shallow-water experimental data. This data consisted of broad-band signals in the 3-4-kHz band collected on an eight-element 2.13-m vertical array. These results serve to demonstrate that good localization performance can be attained for this difficult problem. Guidelines on the appropriate use of ray and normal-mode propagation models are also presented.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:29 ,  Issue: 2 )