Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Concurrent mapping and localization using sidescan sonar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tena Ruiz, I. ; Sch. of Eng. & Phys. Sci., Heriot-Watt Univ., Edinburgh, UK ; de Raucourt, S. ; Petillot, Y. ; Lane, D.M.

This paper describes and evaluates a concurrent mapping and localization (CML) algorithm suitable for localizing an autonomous underwater vehicle. The proposed CML algorithm uses a sidescan sonar to sense the environment. The returns from the sonar are used to detect landmarks in the vehicle's vicinity. These landmarks are used, in conjunction with a vehicle model, by the CML algorithm to concurrently build an absolute map of the environment and to localize the vehicle in absolute coordinates. As the vehicle moves forward, the areas covered by a forward-look sonar overlap, whereas little or no overlap occurs when using sidescan sonar. It has been demonstrated that numerous reobservations by a forward-look sonar of the landmarks can be used to perform CML. Multipass missions, such as sets of parallel and regularly spaced linear tracks, allow a few reobservations of each landmark with sidescan sonar. An evaluation of the CML algorithm using sidescan sonar is made on this type of trajectory. The estimated trajectory provided by the CML algorithm shows significant jerks in the positions and heading brought about by the corrections that occur when a landmark is reobserved. Thus, this trajectory is not useful to mosaic the sea bed. This paper proposes the implementation of an optimal smoother on the CML solution. A forward stochastic map is used in conjunction with a backward Rauch-Tung-Striebel filter to provide the smoothed trajectory. This paper presents simulation and real results and shows that the smoothed CML solution helps to produce a more accurate navigation solution and a smooth navigation trajectory. This paper also shows that the qualitative value of the mosaics produced using CML is far superior to those that do not use it.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:29 ,  Issue: 2 )