By Topic

Binary halftone image resolution increasing by decision tree learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hae Yong Kim ; Dept. de Engenharia de Sistemas Eletronicos, Univ. de Sao Paulo, Brazil

This paper presents a new, accurate, and efficient technique to increase the spatial resolution of binary halftone images. It makes use of a machine learning process to automatically design a zoom operator starting from pairs of input-output sample images. To accurately zoom a halftone image, a large window and large sample images are required. Unfortunately, in this case, the execution time required by most of the previous techniques may be prohibitive. The new solution overcomes this difficulty by using decision tree (DT) learning. Original DT learning is modified to obtain a more efficient technique (WZDT learning). It is useful to know, a priori , sample complexity (the number of training samples needed to obtain, with probability 1-δ, an operator with accuracy ε): we use the probably approximately correct (PAC) learning theory to compute the sample complexity. Since the PAC theory usually yields an overestimated sample complexity, statistical estimation is used to evaluate, a posteriori, a tight error bound. Statistical estimation is also used to choose an appropriate window and to show that DT learning has good inductive bias. The new technique is more accurate than a zooming method based on simple inverse halftoning techniques. The quality of the proposed solution is very close to the theoretical optimal obtainable quality for a neighborhood-based zooming process using the Hamming distance to quantify the error.

Published in:

IEEE Transactions on Image Processing  (Volume:13 ,  Issue: 8 )