By Topic

Some computational aspects of discrete orthonormal moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mukundan, R. ; Dept. of Comput. Sci., Univ. of Canterbury, Christchurch, New Zealand

Discrete orthogonal moments have several computational advantages over continuous moments. However, when the moment order becomes large, discrete orthogonal moments (such as the Tchebichef moments) tend to exhibit numerical instabilities. This paper introduces the orthonormal version of Tchebichef moments, and analyzes some of their computational aspects. The recursive procedure used for polynomial evaluation can be suitably modified to reduce the accumulation of numerical errors. The proposed set of moments can be used for representing image shape features and for reconstructing an image from its moments with a high degree of accuracy.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 8 )