By Topic

On the PAR reduction of OFDM signals using multiple signal representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jayalath, A.D.S. ; Res. Sch. of Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Athaudage, C.R.N.

Multiple signal representation (MSR) techniques have been used to reduce the high peak-to-average power ratios (PAR) of orthogonal frequency division multiplexing (OFDM) signals. These includes partial transmit sequences (PTS), selected mapping (SLM), selective scrambling and interleaving. All MSR techniques often improve the PAR statistics and are iterative in nature. The PAR reduction obtainable depends on the number of iterations performed, which also increases the complexity of the OFDM transmitter. However, a means to estimate the achievable PAR reduction for a given number of iterations has not been reported in the literature so far. This paper derives a lower bound on the achievable PAR when a MSR technique with a given complexity is used. Our analytical results show a clear asymptotic behavior of the PAR as the number of iterations is increased. Simulation results justify the significance and accuracy of the PAR bound derived.

Published in:

Communications Letters, IEEE  (Volume:8 ,  Issue: 7 )