By Topic

A novel multi-antenna impulse radio UWB transceiver for broadband high-throughput 4G WLANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
E. Baccarelli ; INFO-COM Dept., Univ. di Roma "La Sapienza", Rome, Italy ; M. Biagi ; C. Pelizzoni ; P. Bellotti

In the last years, a lot of attention has been devoted to both multi-antenna systems with space-time orthogonal block coding (STOBC) and ultra wideband (UWB) transceivers based on impulse-radio (IR) technologies. In this short contribution we anticipate the architecture of a novel transceiver merging both multi-antenna and pulse position modulation (PPM) IR-UWB techniques and then we test the performance in flat-faded application scenarios typical of emerging broadband 4G WLANs. Three main appealing features are retained by the sketched transceiver scheme. First, it allows to equip the UWB receiver with reliable estimates of the (possibly time-varying) underlying multiple-input multiple-output (MIMO) UWB without reducing the overall information throughput conveyed by the system. Second, the performance confirms that the proposed transceiver is able to achieve "full diversity" even at SNRs as low as 1.5-2 dB. As a consequence, the resulting BERs outperform those of current Single-Input Single-Output (SISO) IR-UWB transceivers over two orders of magnitude even at SNR's as low as 3-4 dB. Third, at target BER's below 10/sup -2/ and radiated powers around 250 μW, the coverage ranges allowed by the proposed MIMO IR-UWB scheme typically outperform those of conventional SISO IR-UWB ones of about two orders of magnitude.

Published in:

IEEE Communications Letters  (Volume:8 ,  Issue: 7 )