By Topic

A satellite cross-calibration experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nieke, J. ; Remote Sensing Labs., Univ. of Zurich, Switzerland ; Aoki, T. ; Tanikawa, T. ; Motoyoshi, H.
more authors

Recently, the Advanced Earth Observing Satellite 2 (ADEOS-2) was launched (December 14, 2002) successfully, and the Global Imager (GLI) onboard the ADEOS-2 satellite became operational in April 2003. In a first calibration checkup, the radiometric performance of GLI was compared relatively to that of other sensors on different satellites with different calibration backgrounds. As a calibration site, a large snowfield near Barrow, Alaska, was used, where space sensors in polar orbits view the same ground target on the same day with small differences in the local crossing times. This is why GLI, the Moderate Resolution Imaging Spectroradiometer (Terra, Aqua), the Sea-viewing Wide Field-of-view Sensor, the Advanced Very High Resolution Radiometer (N16, N17), the Medium Resolution Imaging Spectrometer, and the Advanced Along Track Scanning Radiometer datasets were selected for the following clear-sky condition days: April 14 and 26, 2003. At the same time, ground-truth experiments (e.g., measurements of ground reflectance, bidirectional reflectance distribution function, aerosol optical thickness) were carried out. Thereinafter, top-of-atmosphere (TOA) radiance/reflectance was forward calculated by means of radiative transfer code for each sensor, each band, and each day. Finally, the vicariously retrieved TOA signal was compared to TOA sensor Level 1B data. As a result, GLI's performance is encouraging at that time of the mission. GLI and the other seven sensors deliver similar sensor output in the range of about 5% to 7% around the expected vicariously calculated TOA signal.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:1 ,  Issue: 3 )