By Topic

Combining information extraction with genetic algorithms for text mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Atkinson-Abutridy ; Edinburgh Univ., UK ; C. Mellish ; S. Aitken

An evolutionary approach that combines information extraction technology and genetic algorithms can produce a new, integrated model for text mining. Text mining discovers unseen patterns in textual databases. We've brought together the benefits of GAs for data mining and IE technology to propose a new approach for high-level knowledge discovery. Unlike previous KDT approaches, our model doesn't rely on external resources or conceptual descriptions. Instead, it performs the discovery using only information from the original corpus of text documents and from training data computed from them. The GA that produces the hypotheses is strongly guided by semantic constraints, which means that several specifically defined metrics evaluate the quality and plausibility.

Published in:

IEEE Intelligent Systems  (Volume:19 ,  Issue: 3 )