By Topic

Extraction and recognition of periodically deforming objects by continuous, spatio-temporal shape description

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mowbray, S.D. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Nixon, M.S.

We demonstrate a novel approach to modelling arbitrary temporally-deforming objects using spatio-temporal Fourier descriptors. This is a continuous boundary descriptor, which can handle shapes that vary in a periodic manner (such as a walking subject). As such, we can handle non-rigid, moving shapes that self-occlude. We show how this approach has led to successful shape extraction and description with both laboratory-sourced and real-world data. A consequence of exploiting temporal shape correlation in this approach has led to very good tolerance of noise and other positive performance factors. Further to this, our new approach holds sufficient descriptive power not only for extraction, but also for description purposes, and we have been pleased to note high recognition rates in human gait recognition on a large database.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

27 June-2 July 2004