By Topic

Statistical feature fusion for gait-based human recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ju Han ; Center for Res. in Intelligent Syst., California Univ., Riverside, CA, USA ; Bhanu, B.

This paper presents a novel approach for human recognition by combining statistical gait features from real and synthetic templates. Real templates are directly computed from training silhouette sequences, while synthetic templates are generated from training sequences by simulating silhouette distortion. A statistical feature extraction approach is used for learning effective features from real and synthetic templates. Features learned from real templates characterize human walking properties provided in training sequences, and features learned from synthetic templates predict gait properties under other conditions. A feature fusion strategy is therefore applied at the decision level to improve recognition performance. We apply the proposed approach to USF HumanID Database. Experimental results demonstrate that the proposed fusion approach not only achieves better performance than individual approaches, but also provides large improvement in performance with respect to the baseline algorithm.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

27 June-2 July 2004