By Topic

Scalable discriminant feature selection for image retrieval and recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vasconcelos, N. ; Stat. Visual Comput. Lab., California Univ., San Diego, CA, USA ; Vasconcelos, M.

Problems such as object recognition or image retrieval require feature selection (FS) algorithms that scale well enough to be applicable to databases containing large numbers of image classes and large amounts of data per class. We exploit recent connections between information theoretic feature selection and minimum Bayes error solutions to derive FS algorithms that are optimal in a discriminant sense without compromising scalability. We start by formalizing the intuition that optimal FS must favor discriminant features while penalizing discriminant features that are redundant. We then rely on this result to derive a new family of FS algorithms that enables an explicit trade-off between complexity and classification optimality. This trade-off is controlled by a parameter that encodes the order of feature redundancies that must be explicitly modeled to achieve the optimal solution. Experimental results on databases of natural images show that this order is usually low, enabling optimal FS with very low complexity.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

27 June-2 July 2004